If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3s+s^2-40=0
a = 1; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*1}=\frac{-16}{2} =-8 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*1}=\frac{10}{2} =5 $
| x+74+8x+13+12x-42=360 | | w+7=2w+11 | | -2+y/3=-14 | | 6x-18+4x-10+2x-4=180 | | 6+3x+8=8x-5x | | 6x-18=4x-10 | | y7−3=5 | | 4a+3=11* | | 4x+52+8x−10=90∘ | | 28-x=49-8x | | 6x+17=263 | | -10+v=-8v+10+4v | | x/18=2.7 | | -3q-9=7+5q | | k=33 | | -5t=13=-17 | | 7(x+23)-46=x+26+x+31 | | 7m-10+m=10-2m | | 7x-54=x-24 | | 2z+7=-7+4z | | -9w+5=-4w | | -10-9a=-37 | | 6-6d=-5d | | -2y=8-6y | | -59=-x/3 | | -3r+6=21 | | x-5.77=3.36 | | 3k+9=2k | | 4x+67=3x | | 8x-72=x-2 | | 39=45-w | | 37=w/2+17 |